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Quantum molecular similarity measures (QMSM) and the possibility to construct a discrete 
n-dimensional representation of any electronic structure is briefly described. The quantum 
molecular similarity indices (QMSI) are presented next. They constitute a possible transforma- 
tion of the initial QMSM, intended to be useful in a great variety of applications. A set of diverse 
possibilities in QMSI definitions is given. A comparison of the indices obtained directly from 
electronic density distributions with those derived from the QMSM discrete representation of 
molecules leads to a handful of useful results, allowing a mathematical connection between the 
initial description of Carb6 and the Hodgkin-Richards QMSI's. From the discussion of this 
kind of comparative reasoning a description of new index forms can be deduced. A brief numer- 
ical example is given. 

1. Introduct ion  

Q u a n t u m  molecular  similarity measures ( Q M S M )  have been a subject o f  recent 
discussion and development  [1]. Simultaneously with the definition o f  Q M S M  have 
evolved the quan tum molecular  similarity indices (QMSI)  concepts,  which in the 
seminal paper  [1 a] on the subject were defined as a correlation or cosine-like and as 
Euclidean distance-like indices. They consti tuted a pair o f  similarity and dissimilar- 
ity indices respectively. Fol lowing these early results, Hodgk in  and Richards  [2] 
have described a new index and claimed a better performance for this new form 
than the correlation-like one. 

A thorough discussion on the meaning and usefulness of  Q M S M  and Q M S I  
has been carried out  by Carb6  and Domingo  [lc], later on by  Carb6  and Calabuig 
[li] and in recent reviews [ll-q]. Despite that, still the relationship between the var- 
ious index opt ions has been lacking in the literature. Thus, the purpose o f  this paper  
is to describe the possible relationship between various index definitions, as well 
as to use the newest  Q M S M  theoretical developments in order to construct  new 
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QMSI, employing for this purpose the discrete n-dimensional representation of  
molecular electronic systems. 

The first part  of  this work is concerned with a brief description of  QMSM and 
QMSI. Also, the next task is to develop as much as possible the framework where 
molecules could be represented as n-dimensional points in Euclidean space. A com- 
parison and study of  the n-dimensional representation leads us to an interesting 
relationship between the aforementioned indices. 

2. Q M S M  and  Q M S I  

An unprecedented theoretical remark must  be made before introducing the pres- 
ent subject of  discussion. Once one has chosen the systems to study and an appro- 
priate computat ional  framework as well as a weighting operator, QMSM are 
uniquely defined. On the contrary, QMSI can be chosen within a great number  of  
various mathematical  manipulations, and can be considered as the result of some 
arbitrary transformation from the known QMSM as the starting point  [1 l-n]. 

The basic knowledge attached to the QMSM framework has a very simple 
form. Suppose a set is known: M = {mi} composed of  n molecules. Suppose also 
known is a set of density matrices [3], somehow associated in a one-to-one corre- 
spondence with the set M : P = {pi}, that is, 

V m I E M - - ~ 3 p I E P  ~ m l c * p i ;  VI. (1) 

Accepting this situation, then, from the quantum mechanical point  of  view, 
every molecule in M is represented by a density matrix in P. Thus, in this context a 
molecule is represented by a vector belonging to an oe-dimensional space. The defi- 
nition of  QMSM offers no difficulty whatsoever. Once a positive definite operator 
f~ is chosen, a QMSM between a pair of molecules {mi, m j} E M is obtained by 
choosing the pair of densities {px, p J} E P and computing the integral 

ZJI[a] ~-" (pJlalp/) • (2) 

For  the sake of  simplicity, the presence of  the operator following the symbol of  
the Q M S M  is taken away from the right side of  eq. (2), unless one wants to stress 
the nature or the role of the definite positive operator f~. Then, from the definition 
(2) one can construct an (n x n) similarity matrix: Z = {z jr}. The similarity matrix 
can be parti t ioned in turn taking into account the fact one can consider the matrix 
Z as a row hypervector whose components are the matrix columns, defined easily 
as the elements of  a vector set: {zi = [zjz], V J, I}  E Z.  In this way, there can be sta- 
bilished a new correspondence between the density set P and the column vector 
Q M S M  set Z: 

VpI E P --* 321 E Z ==~ PI ¢:~ zI;  V I .  (3) 

In this manner  one can construct an n-dimensional representation of  the mole- 
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cules belonging to the initial set M. The discrete n-dimensional description of a 
given molecule has been called a point-molecule [1 g, l l-n], and the name molecular 
point-cloud is used as a synonym of the set Z, collecting the point-molecules. 
QMSM constitute a natural vehicle leading towards the discrete n- dimensional 
description of molecular structures. 

Once we have obtained the molecular point-cloud for the set M, QMSI can be 
obtained through mathematical manipulations performed over the elements of the 
similarity matrix Z.  In the first paper discussing the nature of molecular similarity 
[1 a], two classes of indices were described, as follows: 

(a) C-class: A similarity index, commonly referred to as the Carb6 index, which 
is nothing more than a member of the correlation-like index class. In fact, the math- 
ematical interpretation of such an index is no more than the generalized form, 
most suitable in oo-dimensional functional spaces, of the cosine of the angle sub- 
tended by two density distributions, weighted by the positive definite operator fL 
The concrete form of this similarity index is written as 

CYI = Z j I ( Z J J Z I I )  -1/2 . (4) 

The similarity index has values in the interval [0, 1]. Both extreme values represent 
complete dissimilarity or total similarity respectively. These two extremal situa- 
tions correspond to a couple of orthogonal or colinear density distributions. A 
fuTzy set framework [4] can be invoked at this moment, because the correlation-like 
similarity index may be interpreted as a fuzzy membership function defined over 
the Cartesian product: P ® P [lc]. 

(b) D-class: A dissimilarity index, taking the form of an Euclidean distance 
belonging to a distance-like index class. The mathematical interpretation of this 
alternative manipulation of the QMSM matrix elements is such that it represents a 
distance, defined in oo-dimensional space, between two density distributions. The 
dissimilarity index may be defined as 

Dsl = (z;; + z n  - 2z;i) 1/2 . (5) 

The interval where the dissimilarity index values can be found is now: [0, + ~ ] .  
The lower value corresponds this time to complete similarity, while the higher the 
index numerical value is found to be, then less similarity can be attached between 
both densities. 

In the following discussion all the descriptions of possible QMSI will belong to 
one of the above described two classes: C-class or D-class, being complementary to 
each other. Inverse relationships between both index classes may be defined. 

3. Generalized QMSI 

There are many alternatives for generalized definitions of QMSI. Here some pos- 
sible choices are given within the two described classes. 
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(1) D-class generalized indices: 
(a) A generalized Euclidean distance-like index can have the following form: 

(g)DjI(K, X )  = (K[z::  + zxz] - Xz:z)U2; X E [0, 2K], (6) 

which transforms into the Euclidean distance dissimilarity index as defined in 
eq. (5) when using K = 1 and X = 2. 

(b) Another  D-class index can be defined with the simple form 

(°°)D.u = max(z]s ,  zH) (7) 

constituting a distance of infinite order. 

(2) C-class generalized indices: 
(a) The following form has the structure of  a C-class family of  indices. It  has 

been proposed [ln] in order to generalize the Hodgkin-Richards  [2] and Tanimoto  
[5] indices. The general function can be cast in the formula 

( g ) c j t ( K , X )  = ( 2 K -  X ) z u ( D j x ( K , X ) ) - 2 ;  K E [0,1], (8) 

where the generalized distance index described in equation (6) has been used too. 
When the parameters in the formula (8) take the values K = 1 and X = 0 the 
Hodgkin-Richards  index is obtained, whereas the Tanimoto index appears natu- 
rally when K = X = 1. 

(b) As a function of the D-class index of  infinite order, the Petke index [6] can 
also be defined to have the form 

(oo) Csz = z.rz((°°) D.rz) -1 • (9) 

4. Q M S I  in the molecular point-cloud n-dimensional representation 

The nature of the molecular point-cloud has not been used so far. Here the col- 
umns of  the similarity matrix Z can be used directly to obtain new index forms. In 
fact, in this n-dimensional discrete representation of the molecules, one can even 
consider the possibility to construct point-molecules of larger dimensionality. 
Besides the sets used up to now, augmented sets may be gathered to obtain a great 
deal of  information for the original molecular set M. 

4.1. A NEW C-CLASS INDEX 

One can augment the initial dimension of  the molecular cloud Z by using the fol- 
lowing procedure: 

(a) Choose a new molecular set A = {al} composed o fm molecules and the asso- 
ciated density functions set ~ = {at}, such that 
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aj (10) crj. 

(b) F r o m  here a set of  co lumn vectors V = {vl} can be obta ined by comput ing  
the Q M S M :  

wz = (~Jlnlpz); W j  6 E A PZ 6 e .  (11) 

(c) Then,  a new augmented  molecular  point -c loud U may  be cons t ruc ted  s imply 
by the direct sum of  the original molecular  point -c loud Z and the new discrete vec- 
tor  set V, tha t  is, 

U -- Z @ V -- {uz = zz @ vr}  . (12) 

(d) Also, a new rectangular  similarity matr ix  U of  d imens ion  (d x n) where 
d = n + m, whose columns are the augmented  point-molecules  { u i }  can be con- 
structed,  and  a G r a m m  matr ix  compu ted  in the usual way: 

s = u T u .  (13) 

(e) A new C-class index may  be compu ted  using the auxiliary quotient ,  which 
bears a D-class structure: 

(a)Oji = K ( S j I )  -1 , (14) 

where  K is a scale factor. The definit ion (14) can be cast into the C-class index: 

(a)Cjz = (1 + ((d)ojI)r)-l/r , (15) 

where r is a positive integer. 

4.2. O R I G I N  OF T H E  N E W  C-CLASS I N D E X  

The origin of  such a C-class index as the one defined finally in eq. (15) may  be 
easily seen when a (2 x 2) similarity submatr ix  is s tudied as a source of  discrete 
molecular  informat ion.  Such a matr ix  can be defined, once one has chosen two 
molecules (p, q}, as 

(2)Z(p,q) = ((2)Zp, (2)Zq) , (16) 

where  the two co lumn vectors are writ ten as 

(go) (2)Z p ---- (Zpp ~ IX (2)Zq = • (17) 
\ Zpq ] Zqq 

where Zpq = Zqm Then  a C-class similarity index may  be found  for this two vectors 
as the corre la t ion index: 

(2)Cpq = ((2)Zp. (2)Zq)(l(2)zpl l(2)zql) -1 (18) 

and  it is very easy, after a simple manipula t ion  tha t  it can be wri t ten as in eq. (15) 
above, by means  of  the D-class index: 
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(2)0pq = Detl(2)Z(p,q)l((2)Zp • (2)Zq)-I , (19) 

where Det[(2)Z(p,q) [ is, in this case, the value taken by the scale factor K of definition 
(14). 

4.3. RELATIONSHIPS BETWEEN C- AND D-CLASS QMSI 

After the previous discussion on the many possible QMSI forms, one can present 
various connections between the indices, describing the relationships between the 
members of C- and D-classes and how they can be transformed from one class to 
another. 

Knowing a set of D-class indices: {D ji}, then it is easy to obtain a new set of C- 
class indices: { Cjz}, and vice versa, using any of the following recipes: 

(1) D-class to C-class: 

(a) (m)cjz = 1 - ( D j z [ M a x [ V ( J , I } ] ( D j z ) ] - l ) .  

(b) (t)C:t = 1 - tanh(Djl) .  

(c) (P)Cjt = (1 + (D.rx)P)-I/P; p > 0. (20) 

(2) C-class to D-class: Defining the factor K as a scale factor, one also has the 
transformations 

(a) (a)Dj z = KTr -1 arccos(C.q). 

(b) (1)D:I = K(1 - CsI). 

(c) (C)Djz -- K(C.q)-I(I  - C:z). (21) 

In this manner, a set of one class of indices can be transformed into the complemen- 
tary class without problems. This allows a great freedom at the moment of using 
QMSI sets to obtain information, coming from the molecular point-cloud sets Z or 
U, which can be correlated with the characteristic properties of the electronic struc- 
ture set M. 

5. Some relationships related to C-class indices 

In section 4.2 a very helpful but simple situation has been analyzed. This prepara- 
tory discussion may be used to find out the connection with the Hodgkin and 
Richards index and the initial C-class index defined by Carb6. The reasoning which 
follows proves that despite the apparent diversity between both indices, they are 
connected by the structure of the QMSM. Precisely, the presence in the theory of 
the duality between the oo-dimensional and n-dimensional representation of molec- 
ular electronic structures is the clue allowing to find out the connection between 
both indices. 
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Suppose the 2-dimensional case discussed above in section 4.2, the C-class index 
appearing in eq. (18) can also be interpreted as the cosine of the angle subtended 
by the 2-dimensional representations presented in eq. (17). Let us write the corre- 
spondence allowed for a C-class index, even if computed in a discrete 2-dimensional 
scenario, (2) Cpq : cos( ' ) 'pq) .  Let us also take into account the cosine of the angle sub- 
tended by the two oo-dimensional density distributions, associated at the same 
time to the two molecular electronic structures and computed by the C-class Carb6 
index as 

COS2(O~pq) : (Zpq)2(ZppZqq) - I  . (22) 

The expression of the 2-dimensional D-class index (2)0pq in eq. (19) may also be 
rewritten in another way, recalling: 

(J.)pq --~ Zpq(Zpp q- Zqq) -1 , (23) 

which is nothing but half of the Hodgkin-Richards C- class index; then the (2)Opq 
D-class index can be written as 

(2)Opq = Wpq(1 - -  COS-2(Otpq)) , (24) 

so that cos(Tpq) may be written in the form as in eq. (18) in terms of (2)Opq, after a 
simple manipulation one has 

COS-2("/pq) = 1 + ~pq tg4(O~pq) . (25) 

NOW calling Cpq = cos(apq), a final relationship between the indices is found to be 

t.Opq = tg(Tpq ) ~q(1 - C~pq) -1  . (26) 

This means that there exists a direct relationship between the Hodgkin-Richards 
index, ~pq, and the Carb6 index, Cpq. The  relationship involves the two subtended 
angles of the two molecular representations; in fact, eq. (26) above may also be writ- 
ten like a ratio between the tangents of the angles of both representations: 

taJpq --~ tg(Tpq ) tg-2(apq). (27) 

Finally, an inverse relationship will give 

~pq = Wpq( tg(~{pq) -t- OJpq) -1 • (28) 

6. A short numerical  example 

Table 1 contains ordering information for five molecules: the methane and their 
four fluoro derivatives. Wavefunctions and geometries of these molecules have 
been obtained by means of the GAUSSIAN-90 program [8]. Full geometry optimi- 
zation has been carried out using a 6-31G** [7] basis set. After the optimization, 



54 R. Carb6 et al. / On Q M S M  and QMSI  

Table 1 
Ordering numbers of  the methane and their four derivatives. 

Number  Molecule  

1 CH4 
2 CH3F 
3 CH2F2 
4 CHF3 
5 CF4 

the MQSM between all the molecular pairs has been computed and listed in 
table 2. Also, for every molecular pair, the most representative QMSI are reported 
in table 2. 

It can be seen from table 2 that the distance index of infinite order has a quite dif- 
ferent behavior with respect to the other distance indices. The main difference is 
found in the diagonal elements of the matrix: there are no null elements. It can be 
seen how the Carb6 and Hodgkin-Richards indices give similar values for every 
molecular pair. The Petke index attached to every molecular pair is a lower bound 
with respect to the corresponding Carb6 index, as it can be easily deduced from 
their definitions. The Tanimoto index gives the lowest C-class index values while 
the (2) Cpq index returns the highest ones. 

Table 2 
Numer ica l  values of  the M Q S M  and MQSI  for every molecular  pair of  table 1. SIM: Q M S M  12 = I; 
DST:  distance index eq. (5); Dinf: distance index of  infinite order eq. (7); (2)Opq: D-class index eq. (19); 
C A R :  Carb6  index eq. (4); HR:  Hodgk in -Richards  index eq. (8) with K = 1 and X = 0; T A N :  Tani-  
mo to  index eq. (8) with K = X = 1; PET: Petke index eq. (9); (2) Cpq: C-Class index eq. (15) (r = 2) ob- 
tained from (2)Opq. 

Pair SIM DST Dinf (2)0pq CAR HR TAN PET (2) Cpq 

1-1 0.318451 0.000000 0.318451 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
2-1 0.326555 0.362957 0.466397 0.163430 0.847339 0.832148 0.712546 0.700165 0.986907 
2-2 0.466397 0.000000 0.466397 0.000000 1,000000 1.000000 1.000000 1.000000 1.000000 
3-1 0.226270 0.515709 0.400045 0.468689 0.633945 0.629843 0.459687 0.565611 0.905480 
3-2 0.321310 0.473098 0.466397 0.299356 0.743861 0.741677 0,589417 0.688920 0.957996 
3-3 0.400045 0.000000 0.400045 0.000000 1.000000 1.00000 1.000000 1.000000 1.000000 
4-1 0.173171 0.556129 0.337171 0.681591 0.528480 0.528265 0.358940 0.513600 0.826315 
4-2 0.242239 0.564481 0.466397 0.506412 0.610859 0.602909 0.431545 0.519384 0.892127 
4-3 0.292223 0.390858 0.400045 0.229722 0.795673 0.792774 0.656691 0.730475 0.974614 
4-4 0.337171 0.000000 0.337171 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
5-1 0.140276 0.571390 0.318451 0.848162 0.462726 0.462165 0.300530 0.440495 0.762630 
5-2 0.193919 0.605926 0.466397 0.662484 0.528572 0.513704 0.345627 0.415781 0.833656 
5-3 0.228921 0.480406 0.400045 0.399911 0.673741 0.664857 0.497967 0.572238 0.928505 
5-4 0.270797 0.290110 0.337171 0.141468 0.868121 0.865501 0.762892 0.803144 0.990141 
5-5 0.288587 0.000000 0.288587 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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7. Conclusions  

The  dual is t ic  po in t  o f  view { c~-D, n-D} associated to the Q M S M  represen ta t ion  
o f  molecu la r  sets has  interest ing appl icat ions  directed towards  a large f reedom to 
describe new QMSI .  A t  the same time, this s i tua t ion  permi ts  to f ind ou t  convers ion  
re la t ionships  be tween C-class and  D-class indices, and  h idden  connect ions  as the 
one ob ta ined  be tween  H o d g k i n - R i c h a r d s  and  Ca rb6  C-class index definit ions.  
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